Modeling and Analysis of Genetic Algorithms
نویسندگان
چکیده
Some mathematical models have been proposed for theoretical analyses of genetic algorithms (GAs). However, these works have limited their objects to a few kinds of GAs in order to formulate them accurately. In this paper, we regard a GA as an information source that generates input-output data. That is, we regard a population and its next population generated by the GA as input and output respectively. Then we model the GA by learning from these data. Since this method uses only the input-output relations of data and ignores interior structures, we can describe a variety of GAs in a common form, and analyze them from a new point of view. We use some mixture models for a representation of these input-output relations in this paper. By using a mixture model for modeling a GA, we can represent the GA system as a combination of some partial systems. In this paper, we treat two types of mixture models, and investigate how these models are effective for analyzing GAs through some numerical experiments.
منابع مشابه
Comparison of Simulated Annealing, Genetic, and Tabu Search Algorithms for Fracture Network Modeling
The mathematical modeling of fracture networks is critical for the exploration and development of natural resources. Fractures can help the production of petroleum, water, and geothermal energy. They also greatly influence the drainage and production of methane gas from coal beds. Orientation and spatial distribution of fractures in rocks are important factors in controlling fluid flow. The obj...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملEstimation of Moisture in Transformer Insulation Using Dielectric Frequency Response Analysis by Heuristic Algorithms
Transformers are one of the most valuable assets of power systems. Maintenance and condition assessment of transformers has become one of the concerns of researchers due to huge number of transformers has been approached to the end of their lifetimes. Transformer’s lifetime depends on the life of its insulation and the insulation’s life is strongly influenced by its moisture attraction as well....
متن کاملApplication of Genetic Algorithm in Kinetic Modeling of Fischer-Tropsch Synthesis
Kinetic modeling is an important issue, whose objective is the accurate determination of the rates of various reactions taking place in a reacting system. This issue is a pivotal element in the process design and development particularly for novel processes which are based on reactions taking place between various types of species. The Fischer Tropsch (FT) reactions have been used as the ki...
متن کاملAccuracy Improvement of Mood Disorders Prediction using a Combination of Data Mining and Meta-Heuristic Algorithms
Introduction: Since the delay or mistake in the diagnosis of mood disorders due to the similarity of their symptoms hinders effective treatment, this study aimed to accurately diagnose mood disorders including psychosis, autism, personality disorder, bipolar, depression, and schizophrenia, through modeling and analyzing patients' data. Method: Data collected in this applied developmental resear...
متن کامل